โบรกเกอร์และ Props
สำหรับธุรกิจ
00
Days
:
00
Hours
:
00
Minutes
:
00
Seconds
E7 BBKG NumSharp Sample
03/09/2025
143
Desktop, Mobile, Web
ตั้งแต่ 18/12/2024
การขาย
2
ติดตั้งฟรี
3201
"E7 BBKG NumSharp Sample" ภาพที่อัปโหลด

As requested by many of you, we are now working hard to provide examples of some of our machine learning code and packages.

TensorFlow, PyTorch, Keras, Numpy, Pandas and many more .NET packages to get going inside of cTrader.

Our mission is to make Machine Learning inside cTrader easier for everyone.

Happy hunting!

*** This code does not trade anything (it only prints out data etc). It is simply sample code of how you can start creating your own AI models using our Machine Learning packages.

.......................................................

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using cAlgo.API;
using cAlgo.API.Collections;
using cAlgo.API.Indicators;
using cAlgo.API.Internals;

using NumSharp;
using np = NumSharp.np;
using Shape = NumSharp.Shape;

using PandasNet;
using static PandasNet.PandasApi;

namespace cAlgo.Robots
{
    [Robot(TimeZone = TimeZones.UTC, AccessRights = AccessRights.None)]
    public class E7BBKGNumSharpSample : Robot
    {
        [Parameter("Version 1.01", DefaultValue = "Version 1.01")]
        public string Version { get; set; }

        [Parameter("Source")]
        public DataSeries Source { get; set; }

        [Parameter("Bars Required", DefaultValue = 50, MinValue = 1, MaxValue = 10000, Step = 1)]
        public int BarsRequired { get; set; }

        [Parameter("Method Name", DefaultValue = MethodName.DataSplitPrints)]
        public MethodName Mode { get; set; }
        public enum MethodName
        {
            DataSplitPrints,
            PandasPrints,
            NDArrayPrints
        }
        
        protected override void OnStart()
        {
            // Initialize any indicators
        }

        protected override void OnBar()
        {
            try
            {
                if (Mode == MethodName.DataSplitPrints)
                {
                    DataSplitPrints();
                }
                else if (Mode == MethodName.PandasPrints)
                {
                    PandasPrints();
                }
                else if (Mode == MethodName.NDArrayPrints)
                {
                    NDArrayPrints();
                }
            }
            catch (Exception ex)
            {
                Print($"Error: {ex.Message}");
                if (ex.InnerException != null)
                {
                    Print($"Inner Exception: {ex.InnerException.Message}");
                    throw;
                }
            }
        }

        private float[,] GetDataSet()
        {
            int startBar = Bars.ClosePrices.Count - BarsRequired;
            float[,] inputSignals = new float[BarsRequired, 5];

            for (int i = 0; i < BarsRequired; i++)
            {
                int barIndex = startBar + i;
                inputSignals[i, 0] = (float)Bars.OpenPrices[barIndex];
                inputSignals[i, 1] = (float)Bars.HighPrices[barIndex];
                inputSignals[i, 2] = (float)Bars.LowPrices[barIndex];
                inputSignals[i, 3] = (float)Bars.ClosePrices[barIndex];
                inputSignals[i, 4] = (float)Bars.TickVolumes[barIndex];
            }
            return inputSignals;
        }
        
        private float[,] GetTargetDataSet()
        {
            int startBar = Bars.ClosePrices.Count - BarsRequired;
            float[,] inputSignals = new float[BarsRequired, 5];

            for (int i = 0; i < BarsRequired; i++)
            {
                int barIndex = startBar + i;
                inputSignals[i, 0] = (float)Bars.OpenPrices[barIndex];
                inputSignals[i, 1] = (float)Bars.HighPrices[barIndex];
                inputSignals[i, 2] = (float)Bars.LowPrices[barIndex];
                inputSignals[i, 3] = (float)Bars.ClosePrices[barIndex];
                inputSignals[i, 4] = (float)Bars.TickVolumes[barIndex];
            }
            return inputSignals;
        }
        
        /// NumSharp Data Split Prints
        public void DataSplitPrints()
        {
            // Reshape input data to match the model's expected input shape
            //var inputShape = new Shape(-1, BarsRequired, 5);
            NDArray inputData = np.array<float>(GetDataSet());
            Print("Input NDarray: " + string.Join(", ", inputData));
            
            // Reshape target data to match the target shape expected by the model
            //var targetShape = new Shape(-1, 5);
            NDArray targetData = np.array<float>(GetTargetDataSet());
            Print("Target NDarray: " + string.Join(", ", targetData));
            
            // Split data into training and test sets
            int testSize = (int)(0.2 * inputData.shape[0]); // 20% for testing
            var (x_train, x_test) = (inputData[$":{inputData.shape[0] - testSize}"], inputData[$"{inputData.shape[0] - testSize}:"]);
            var (y_train, y_test) = (targetData[$":{targetData.shape[0] - testSize}"], targetData[$"{targetData.shape[0] - testSize}:"]);
            
            Print("X_train data: " + string.Join(", ", x_train));
            Print("X_test data: " + string.Join(", ", x_test));
            Print("Y_train data: " + string.Join(", ", y_train));
            Print("Y_test data: " + string.Join(", ", y_test));
        }
        
        /// PandasNet Prints
        public void PandasPrints()
        {
            // Convert float[,] to List<Series>
            var inputData = GetDataSet();
            var targetData = GetTargetDataSet();
            
            var inputSeriesList = new List<Series>();
            var targetSeriesList = new List<Series>();
            
            for (int col = 0; col < inputData.GetLength(1); col++)
            {
                List<float> columnData = new List<float>();
                for (int row = 0; row < inputData.GetLength(0); row++)
                {
                    columnData.Add(inputData[row, col]);
                }
                inputSeriesList.Add(new Series(columnData.ToArray()));
            }
            
            for (int col = 0; col < targetData.GetLength(1); col++)
            {
                List<float> columnData = new List<float>();
                for (int row = 0; row < targetData.GetLength(0); row++)
                {
                    columnData.Add(targetData[row, col]);
                }
                targetSeriesList.Add(new Series(columnData.ToArray()));
            }
            
            // Create DataFrames
            DataFrame inputDataFrame = new DataFrame(inputSeriesList);
            DataFrame targetDataFrame = new DataFrame(targetSeriesList);
            
            Print("Input DataFrame: " + inputDataFrame);
            Print("Target DataFrame: " + targetDataFrame);
            
            //Print("Input DataFrame: " + string.Join(", ", inputDataFrame));
            //Print("Target DataFrame: " + string.Join(", ", targetDataFrame));
        }
        
        /// Simple NumSharp NDArrays Prints
        public void NDArrayPrints()
        {
            if (Bars.ClosePrices.Count < BarsRequired)
                return;

            try
            {
                // Calling your Input Data float[,]
                float[,] inputData = GetDataSet();

                // Convert to NDArray and reshape to (BarsRequired, 5)
                NDArray inputNDArray = np.array(inputData);   // NumSharp
                Print("Input NumSharp NDarray Data : " + string.Join(", ", inputNDArray));
                Print("Input NumSharp NDarray Shape: " + string.Join(", ", inputNDArray.shape));
                
                int expectedLength = BarsRequired * 5;
                Print($"Expected NumSharp NDarray Length: {expectedLength}");
                Print($"Input NumSharp NDarray Size: {inputNDArray.size}");

                if (inputNDArray.size != expectedLength)
                {
                    Print($"Length MisMatch: Expected Length {expectedLength}, but got Size {inputNDArray.size}");
                    return;
                }
            }
            catch (Exception ex)
            {
                Print("Exception: " + ex.Message);
                Print("StackTrace: " + ex.StackTrace);

                Exception innerException = ex.InnerException;
                while (innerException != null)
                {
                    Print("Inner Exception: " + innerException.Message);
                    Print("Inner Exception StackTrace: " + innerException.StackTrace);
                    innerException = innerException.InnerException;
                }
            }
        }
    }
}

0.0
รีวิว: 0
รีวิวจากลูกค้า
ยังไม่มีรีวิวสำหรับผลิตภัณฑ์นี้ หากเคยลองแล้ว ขอเชิญมาเป็นคนแรกที่บอกคนอื่น!
เพิ่มเติมจากผู้เขียนคนนี้
เรตติ้งสูง
ฟรี
E7 Volume Profile
E7 Volume Profile, more modern look and feel.
ยอดนิยม
$ 25
/
$50
E7 BBKG Indicator
E7 BBKG indicator with 80% plus accuracy used to show both, possible reversal and trend.
เรตติ้งสูง
ฟรี
E7 Polynomial Regression Channel
Polynomial Regression Channel which also reflects the volatility of the underlying asset.
เรตติ้งสูง
ฟรี
E7 Harmonic Structures Basic
E7 Harmonic Structures Basic.
E7 Correlation Dashboard
E7 Correlation Dashboard.
เรตติ้งสูง
ฟรี
E7 Indicators Free Overlays
Bollinger Band Cloud, Heiken Ashi, Trend Follower and Parabolic SAR.
E7 BlackScholes Model
Option pricing using the BlackScholes model and the Math.Numerics packages
E7 Indicators Free Studies
ADXR, KDJ, SineWave, Bollinger Band Volatility and AEOscillator.
นอกจากนี้คุณยังอาจชอบ
cBot
Grid
FVG Strategy and Grid (Made with AlgoBuilderX)
This strategy opens trades when Fair Value Gaps are filled, using grid management and an equity SL for risk control.
cBot
NAS100
NZDUSD
Martingale
+26
ElliottWaveBot
N.B.: Results with an initial invested capital of 100 euros.
cBot
RSI
XAUUSD
Martingale
+9
RedAndBlack
RedAndBlack: buy on bullish close, sell on bearish close. Simple trend-following trading strategy.
cBot
RSI
Signal
Hammer and Shooting Star Strategy (Made with AlgoBuilderX)
The strategy detects "Hammer" and "Shooting Star" patterns with RSI confirmation, using fixed Take Profit and Stop Loss.
cBot
XAUUSD
Commodities
Forex
+4
New Ilan Pro TrialDay15
New Ilan Pro TrialDay15
ยอดนิยม
$ 19
/
$29
Scalping Bot
Der MultiStrategyScalpingBot ist ein automatisierter Handelsroboter für die cAlgo-Plattform.
cBot
Indices
Breakout
Commodities
+2
FutureTrader_Light
FutureTrader is a trendline-based trading bot designed for trending markets. Draw colored trendlines on your chart (blue
cBot
NAS100
NZDUSD
Forex
+22
US2000 up to 100 % (24-11-2024 - 09-03-2025) Short edition
🚀 N.B.: Results with an initial invested capital of 100 euros.🚀 📌 Tested on US2000 with Accurate Prices
เรตติ้งสูง
ฟรี
cBot
XAUUSD
Commodities
Forex
+3
Volatility Sniper Breakout BETA
Volatility Sniper Breakout Bot (Beta) – Intelligent Breakout Trading for Volatile Markets
cBot
Grid
NAS100
NZDUSD
+17
RISK SHIELD V1.0(ENG-RUS) be for 31.12.2026
RISK SHIELD - Smart Risk Manager for cTrader.• Your license is valid until: December 31, 2026.
cBot
Grid
RSI
Martingale
+4
DragonMoneyForexNet6
This production version of Dragon Money Forex Pro
posilabel
Display the rate value for the position and the type of pending order.
cBot
Supertrend
Signal
[Fx4U] AUDCHF - Price Action
Bot is based on Price Action strategy to open & manage orders. It is effective capital management and high profitability
cBot
NAS100
XAUUSD
Breakout
+10
BoletaProfit2
BoletaProfit — Advanced Order Ticket for cTrader
เรตติ้งสูง
ฟรี
cBot
NAS100
XAUUSD
Martingale
+3
Stop Order
Scalping V.1 (Stop Order TP + SL)
ยอดนิยม
$ 20
/
$40
cBot
RSI
Indices
Commodities
+7
Super trend RSI ADX
Supertrend RSI ADX is a trading system built for traders who demand precision, control, and steady performance.
cBot
NAS100
NZDUSD
XAUUSD
+10
GoldandSilverPairTrading_advanced
A Fintech-Engineered Investment Opportunity in Algorithmic Gold Trading
cBot
NAS100
NZDUSD
XAUUSD
+5
GOLD HUNTER TRIAL DAY15
GOLD HUNTER TRIAL DAY15