E7 BBKG NumSharp Sample
Логотип продукта "E7 BBKG NumSharp Sample"
03/09/2025
83
Desktop, Mobile, Web
Загруженное изображение продукта "E7 BBKG NumSharp Sample"

As requested by many of you, we are now working hard to provide examples of some of our machine learning code and packages.

TensorFlow, PyTorch, Keras, Numpy, Pandas and many more .NET packages to get going inside of cTrader.

Our mission is to make Machine Learning inside cTrader easier for everyone.

Happy hunting!

*** This code does not trade anything (it only prints out data etc). It is simply sample code of how you can start creating your own AI models using our Machine Learning packages.

.......................................................

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using cAlgo.API;
using cAlgo.API.Collections;
using cAlgo.API.Indicators;
using cAlgo.API.Internals;

using NumSharp;
using np = NumSharp.np;
using Shape = NumSharp.Shape;

using PandasNet;
using static PandasNet.PandasApi;

namespace cAlgo.Robots
{
    [Robot(TimeZone = TimeZones.UTC, AccessRights = AccessRights.None)]
    public class E7BBKGNumSharpSample : Robot
    {
        [Parameter("Version 1.01", DefaultValue = "Version 1.01")]
        public string Version { get; set; }

        [Parameter("Source")]
        public DataSeries Source { get; set; }

        [Parameter("Bars Required", DefaultValue = 50, MinValue = 1, MaxValue = 10000, Step = 1)]
        public int BarsRequired { get; set; }

        [Parameter("Method Name", DefaultValue = MethodName.DataSplitPrints)]
        public MethodName Mode { get; set; }
        public enum MethodName
        {
            DataSplitPrints,
            PandasPrints,
            NDArrayPrints
        }
        
        protected override void OnStart()
        {
            // Initialize any indicators
        }

        protected override void OnBar()
        {
            try
            {
                if (Mode == MethodName.DataSplitPrints)
                {
                    DataSplitPrints();
                }
                else if (Mode == MethodName.PandasPrints)
                {
                    PandasPrints();
                }
                else if (Mode == MethodName.NDArrayPrints)
                {
                    NDArrayPrints();
                }
            }
            catch (Exception ex)
            {
                Print($"Error: {ex.Message}");
                if (ex.InnerException != null)
                {
                    Print($"Inner Exception: {ex.InnerException.Message}");
                    throw;
                }
            }
        }

        private float[,] GetDataSet()
        {
            int startBar = Bars.ClosePrices.Count - BarsRequired;
            float[,] inputSignals = new float[BarsRequired, 5];

            for (int i = 0; i < BarsRequired; i++)
            {
                int barIndex = startBar + i;
                inputSignals[i, 0] = (float)Bars.OpenPrices[barIndex];
                inputSignals[i, 1] = (float)Bars.HighPrices[barIndex];
                inputSignals[i, 2] = (float)Bars.LowPrices[barIndex];
                inputSignals[i, 3] = (float)Bars.ClosePrices[barIndex];
                inputSignals[i, 4] = (float)Bars.TickVolumes[barIndex];
            }
            return inputSignals;
        }
        
        private float[,] GetTargetDataSet()
        {
            int startBar = Bars.ClosePrices.Count - BarsRequired;
            float[,] inputSignals = new float[BarsRequired, 5];

            for (int i = 0; i < BarsRequired; i++)
            {
                int barIndex = startBar + i;
                inputSignals[i, 0] = (float)Bars.OpenPrices[barIndex];
                inputSignals[i, 1] = (float)Bars.HighPrices[barIndex];
                inputSignals[i, 2] = (float)Bars.LowPrices[barIndex];
                inputSignals[i, 3] = (float)Bars.ClosePrices[barIndex];
                inputSignals[i, 4] = (float)Bars.TickVolumes[barIndex];
            }
            return inputSignals;
        }
        
        /// NumSharp Data Split Prints
        public void DataSplitPrints()
        {
            // Reshape input data to match the model's expected input shape
            //var inputShape = new Shape(-1, BarsRequired, 5);
            NDArray inputData = np.array<float>(GetDataSet());
            Print("Input NDarray: " + string.Join(", ", inputData));
            
            // Reshape target data to match the target shape expected by the model
            //var targetShape = new Shape(-1, 5);
            NDArray targetData = np.array<float>(GetTargetDataSet());
            Print("Target NDarray: " + string.Join(", ", targetData));
            
            // Split data into training and test sets
            int testSize = (int)(0.2 * inputData.shape[0]); // 20% for testing
            var (x_train, x_test) = (inputData[$":{inputData.shape[0] - testSize}"], inputData[$"{inputData.shape[0] - testSize}:"]);
            var (y_train, y_test) = (targetData[$":{targetData.shape[0] - testSize}"], targetData[$"{targetData.shape[0] - testSize}:"]);
            
            Print("X_train data: " + string.Join(", ", x_train));
            Print("X_test data: " + string.Join(", ", x_test));
            Print("Y_train data: " + string.Join(", ", y_train));
            Print("Y_test data: " + string.Join(", ", y_test));
        }
        
        /// PandasNet Prints
        public void PandasPrints()
        {
            // Convert float[,] to List<Series>
            var inputData = GetDataSet();
            var targetData = GetTargetDataSet();
            
            var inputSeriesList = new List<Series>();
            var targetSeriesList = new List<Series>();
            
            for (int col = 0; col < inputData.GetLength(1); col++)
            {
                List<float> columnData = new List<float>();
                for (int row = 0; row < inputData.GetLength(0); row++)
                {
                    columnData.Add(inputData[row, col]);
                }
                inputSeriesList.Add(new Series(columnData.ToArray()));
            }
            
            for (int col = 0; col < targetData.GetLength(1); col++)
            {
                List<float> columnData = new List<float>();
                for (int row = 0; row < targetData.GetLength(0); row++)
                {
                    columnData.Add(targetData[row, col]);
                }
                targetSeriesList.Add(new Series(columnData.ToArray()));
            }
            
            // Create DataFrames
            DataFrame inputDataFrame = new DataFrame(inputSeriesList);
            DataFrame targetDataFrame = new DataFrame(targetSeriesList);
            
            Print("Input DataFrame: " + inputDataFrame);
            Print("Target DataFrame: " + targetDataFrame);
            
            //Print("Input DataFrame: " + string.Join(", ", inputDataFrame));
            //Print("Target DataFrame: " + string.Join(", ", targetDataFrame));
        }
        
        /// Simple NumSharp NDArrays Prints
        public void NDArrayPrints()
        {
            if (Bars.ClosePrices.Count < BarsRequired)
                return;

            try
            {
                // Calling your Input Data float[,]
                float[,] inputData = GetDataSet();

                // Convert to NDArray and reshape to (BarsRequired, 5)
                NDArray inputNDArray = np.array(inputData);   // NumSharp
                Print("Input NumSharp NDarray Data : " + string.Join(", ", inputNDArray));
                Print("Input NumSharp NDarray Shape: " + string.Join(", ", inputNDArray.shape));
                
                int expectedLength = BarsRequired * 5;
                Print($"Expected NumSharp NDarray Length: {expectedLength}");
                Print($"Input NumSharp NDarray Size: {inputNDArray.size}");

                if (inputNDArray.size != expectedLength)
                {
                    Print($"Length MisMatch: Expected Length {expectedLength}, but got Size {inputNDArray.size}");
                    return;
                }
            }
            catch (Exception ex)
            {
                Print("Exception: " + ex.Message);
                Print("StackTrace: " + ex.StackTrace);

                Exception innerException = ex.InnerException;
                while (innerException != null)
                {
                    Print("Inner Exception: " + innerException.Message);
                    Print("Inner Exception StackTrace: " + innerException.StackTrace);
                    innerException = innerException.InnerException;
                }
            }
        }
    }
}

0.0
Отзывы: 0
Отзывы покупателей
У этого продукта еще нет отзывов. Уже попробовали его? Поделитесь впечатлениями!
Больше от этого автора
E7 Polynomial Regression Channel
Polynomial Regression Channel which also reflects the volatility of the underlying asset.
E7 BBKG Indicator
E7 BBKG indicator with 80% plus accuracy used to show both, possible reversal and trend.
Высокий рейтинг
Бесплатно
E7 Volume Profile
E7 Volume Profile, more modern look and feel.
Высокий рейтинг
Бесплатно
E7 Harmonic Structures Basic
E7 Harmonic Structures Basic.
E7 BlackScholes Model
Option pricing using the BlackScholes model and the Math.Numerics packages
E7 Indicators Free Overlays
Bollinger Band Cloud, Heiken Ashi, Trend Follower and Parabolic SAR.
E7 Indicators Free Studies
ADXR, KDJ, SineWave, Bollinger Band Volatility and AEOscillator.
Вам также может понравиться
EngulfingCoreBotPro
Engulfing Pattern cBot Pro: Smart candlestick trading with filters, risk control & daily protection.
сиБот
RSI
Indices
XAUUSD
+9
Super USD Trio AI-DEMO-v1
Super USD Trio AI is a smart, multi-symbol Forex trading robot tailored for EURUSD, USDJPY, and GBPUSD.
Популярный
$ 30
/
$50
сиБот
NAS100
NZDUSD
XAUUSD
+10
CandlePatternBot
CandlePatternBot — Trade classic candlestick signals with bull/bear bias and SL/TP or next-pattern exits.
сиБот
Breakout
XAUUSD
ATR
+1
SmartTradeOnHoursBreak - XAUUSD
SmartBuyOn4HBreak – Precision Trading for Gold with Patience-Powered Profit.
сиБот
RSI
ATR
Forex
+2
NEXUS PRIME RSI
Intelligent system, Available any instrument. Profit 12. Drawdown 1%
Trading_stop Demo
Trading_stop DEMO for cTrader Description: Trading_stop is a fast, lightweight trailing stop panel for cTrader, designed
сиБот
Indices
Breakout
Commodities
+3
TradeControl_Dashboard_DEMO
radeControl Dashboard is a multi-pair monitoring system with intelligent alerts and risk management
сиБот
Grid
RSI
NZDUSD
+7
DragonRSIcBotDemo
DragonRSIcBot is an RSI-driven grid/martingale cBot
сиБот
Indices
Forex
Signal
ADX US500 SP500 TF 5M CTRADER
N.B.: Results with an initial invested capital of 100 euros.
SarahMM2
Un robot de trading intelligent basé sur le croisement de moyennes mobiles, avec un drawdown maîtrisé et une rentabilité
сиБот
Indices
RSI
SP500 up to 40% (13-09-24 - 09-03-25) Short edition
N.B.: Results with an initial invested capital of 100 euros.
NajihFx Demo
NajihFx Demo and Backtesting Only
Популярный
$ 15
/
$20
сиБот
Grid
NAS100
NZDUSD
+10
Cover For Hand
Semi bot will manage your position by moving stoploss and cover loss with 3 martingale style
сиБот
Breakout
ATR
Signal
EMA Up&Down 2025 Ctrader bot
✨ N.B.: Results with an initial invested capital of 100 euros.📈
dave rsi
RSI Scalping cBot scalper for volatile indexes.
сиБот
XAUUSD
Commodities
Forex
+3
Volatility Sniper Breakout BETA
Volatility Sniper Breakout Bot (Beta) – Intelligent Breakout Trading for Volatile Markets
сиБот
Forex
Supertrend
Signal
+1
[Fx4U] GBPUSD - Price Action
Bot is based on Price Action strategy to open & manage orders. It is effective capital management and high profitability
Keltner & Parabolic SAR Grid (Made with AlgoBuilderX)
This strategy uses Keltner Channels, Parabolic SAR, Grid strategy and session filters