经纪商和自营
面向企业
00
Days
:
00
Hours
:
00
Minutes
:
00
Seconds
E7 BBKG NumSharp Sample
03/09/2025
143
Desktop, Mobile, Web
注册日期 18/12/2024
销售
2
免费安装
3202
"E7 BBKG NumSharp Sample" 已上传图片

As requested by many of you, we are now working hard to provide examples of some of our machine learning code and packages.

TensorFlow, PyTorch, Keras, Numpy, Pandas and many more .NET packages to get going inside of cTrader.

Our mission is to make Machine Learning inside cTrader easier for everyone.

Happy hunting!

*** This code does not trade anything (it only prints out data etc). It is simply sample code of how you can start creating your own AI models using our Machine Learning packages.

.......................................................

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using cAlgo.API;
using cAlgo.API.Collections;
using cAlgo.API.Indicators;
using cAlgo.API.Internals;

using NumSharp;
using np = NumSharp.np;
using Shape = NumSharp.Shape;

using PandasNet;
using static PandasNet.PandasApi;

namespace cAlgo.Robots
{
    [Robot(TimeZone = TimeZones.UTC, AccessRights = AccessRights.None)]
    public class E7BBKGNumSharpSample : Robot
    {
        [Parameter("Version 1.01", DefaultValue = "Version 1.01")]
        public string Version { get; set; }

        [Parameter("Source")]
        public DataSeries Source { get; set; }

        [Parameter("Bars Required", DefaultValue = 50, MinValue = 1, MaxValue = 10000, Step = 1)]
        public int BarsRequired { get; set; }

        [Parameter("Method Name", DefaultValue = MethodName.DataSplitPrints)]
        public MethodName Mode { get; set; }
        public enum MethodName
        {
            DataSplitPrints,
            PandasPrints,
            NDArrayPrints
        }
        
        protected override void OnStart()
        {
            // Initialize any indicators
        }

        protected override void OnBar()
        {
            try
            {
                if (Mode == MethodName.DataSplitPrints)
                {
                    DataSplitPrints();
                }
                else if (Mode == MethodName.PandasPrints)
                {
                    PandasPrints();
                }
                else if (Mode == MethodName.NDArrayPrints)
                {
                    NDArrayPrints();
                }
            }
            catch (Exception ex)
            {
                Print($"Error: {ex.Message}");
                if (ex.InnerException != null)
                {
                    Print($"Inner Exception: {ex.InnerException.Message}");
                    throw;
                }
            }
        }

        private float[,] GetDataSet()
        {
            int startBar = Bars.ClosePrices.Count - BarsRequired;
            float[,] inputSignals = new float[BarsRequired, 5];

            for (int i = 0; i < BarsRequired; i++)
            {
                int barIndex = startBar + i;
                inputSignals[i, 0] = (float)Bars.OpenPrices[barIndex];
                inputSignals[i, 1] = (float)Bars.HighPrices[barIndex];
                inputSignals[i, 2] = (float)Bars.LowPrices[barIndex];
                inputSignals[i, 3] = (float)Bars.ClosePrices[barIndex];
                inputSignals[i, 4] = (float)Bars.TickVolumes[barIndex];
            }
            return inputSignals;
        }
        
        private float[,] GetTargetDataSet()
        {
            int startBar = Bars.ClosePrices.Count - BarsRequired;
            float[,] inputSignals = new float[BarsRequired, 5];

            for (int i = 0; i < BarsRequired; i++)
            {
                int barIndex = startBar + i;
                inputSignals[i, 0] = (float)Bars.OpenPrices[barIndex];
                inputSignals[i, 1] = (float)Bars.HighPrices[barIndex];
                inputSignals[i, 2] = (float)Bars.LowPrices[barIndex];
                inputSignals[i, 3] = (float)Bars.ClosePrices[barIndex];
                inputSignals[i, 4] = (float)Bars.TickVolumes[barIndex];
            }
            return inputSignals;
        }
        
        /// NumSharp Data Split Prints
        public void DataSplitPrints()
        {
            // Reshape input data to match the model's expected input shape
            //var inputShape = new Shape(-1, BarsRequired, 5);
            NDArray inputData = np.array<float>(GetDataSet());
            Print("Input NDarray: " + string.Join(", ", inputData));
            
            // Reshape target data to match the target shape expected by the model
            //var targetShape = new Shape(-1, 5);
            NDArray targetData = np.array<float>(GetTargetDataSet());
            Print("Target NDarray: " + string.Join(", ", targetData));
            
            // Split data into training and test sets
            int testSize = (int)(0.2 * inputData.shape[0]); // 20% for testing
            var (x_train, x_test) = (inputData[$":{inputData.shape[0] - testSize}"], inputData[$"{inputData.shape[0] - testSize}:"]);
            var (y_train, y_test) = (targetData[$":{targetData.shape[0] - testSize}"], targetData[$"{targetData.shape[0] - testSize}:"]);
            
            Print("X_train data: " + string.Join(", ", x_train));
            Print("X_test data: " + string.Join(", ", x_test));
            Print("Y_train data: " + string.Join(", ", y_train));
            Print("Y_test data: " + string.Join(", ", y_test));
        }
        
        /// PandasNet Prints
        public void PandasPrints()
        {
            // Convert float[,] to List<Series>
            var inputData = GetDataSet();
            var targetData = GetTargetDataSet();
            
            var inputSeriesList = new List<Series>();
            var targetSeriesList = new List<Series>();
            
            for (int col = 0; col < inputData.GetLength(1); col++)
            {
                List<float> columnData = new List<float>();
                for (int row = 0; row < inputData.GetLength(0); row++)
                {
                    columnData.Add(inputData[row, col]);
                }
                inputSeriesList.Add(new Series(columnData.ToArray()));
            }
            
            for (int col = 0; col < targetData.GetLength(1); col++)
            {
                List<float> columnData = new List<float>();
                for (int row = 0; row < targetData.GetLength(0); row++)
                {
                    columnData.Add(targetData[row, col]);
                }
                targetSeriesList.Add(new Series(columnData.ToArray()));
            }
            
            // Create DataFrames
            DataFrame inputDataFrame = new DataFrame(inputSeriesList);
            DataFrame targetDataFrame = new DataFrame(targetSeriesList);
            
            Print("Input DataFrame: " + inputDataFrame);
            Print("Target DataFrame: " + targetDataFrame);
            
            //Print("Input DataFrame: " + string.Join(", ", inputDataFrame));
            //Print("Target DataFrame: " + string.Join(", ", targetDataFrame));
        }
        
        /// Simple NumSharp NDArrays Prints
        public void NDArrayPrints()
        {
            if (Bars.ClosePrices.Count < BarsRequired)
                return;

            try
            {
                // Calling your Input Data float[,]
                float[,] inputData = GetDataSet();

                // Convert to NDArray and reshape to (BarsRequired, 5)
                NDArray inputNDArray = np.array(inputData);   // NumSharp
                Print("Input NumSharp NDarray Data : " + string.Join(", ", inputNDArray));
                Print("Input NumSharp NDarray Shape: " + string.Join(", ", inputNDArray.shape));
                
                int expectedLength = BarsRequired * 5;
                Print($"Expected NumSharp NDarray Length: {expectedLength}");
                Print($"Input NumSharp NDarray Size: {inputNDArray.size}");

                if (inputNDArray.size != expectedLength)
                {
                    Print($"Length MisMatch: Expected Length {expectedLength}, but got Size {inputNDArray.size}");
                    return;
                }
            }
            catch (Exception ex)
            {
                Print("Exception: " + ex.Message);
                Print("StackTrace: " + ex.StackTrace);

                Exception innerException = ex.InnerException;
                while (innerException != null)
                {
                    Print("Inner Exception: " + innerException.Message);
                    Print("Inner Exception StackTrace: " + innerException.StackTrace);
                    innerException = innerException.InnerException;
                }
            }
        }
    }
}

0.0
评价:0
客户评价
该产品尚无评价。已经试过了?抢先告诉其他人!
该作者的其他作品
E7 Volume Profile
E7 Volume Profile, more modern look and feel.
指标
Prop
E7 BBKG Indicator
E7 BBKG indicator with 80% plus accuracy used to show both, possible reversal and trend.
E7 Polynomial Regression Channel
Polynomial Regression Channel which also reflects the volatility of the underlying asset.
E7 Harmonic Structures Basic
E7 Harmonic Structures Basic.
E7 Correlation Dashboard
E7 Correlation Dashboard.
指标
Bollinger
E7 Indicators Free Overlays
Bollinger Band Cloud, Heiken Ashi, Trend Follower and Parabolic SAR.
指标
Indices
E7 BlackScholes Model
Option pricing using the BlackScholes model and the Math.Numerics packages
指标
Bollinger
E7 Indicators Free Studies
ADXR, KDJ, SineWave, Bollinger Band Volatility and AEOscillator.
E7 cTrader User ID
cTrader ID
猜您喜欢
cBot
Indices
Breakout
Commodities
+2
FutureTrader_DEMO
FutureTrader is a trendline-based trading bot designed for trending markets.
cBot
Supertrend
Signal
High Profit EURAUD
Bot is based on Price Action strategy to open & manage orders. It is effective capital management and high profitability
cBot
Indices
ATR
Forex
+2
FREE Heikin Aishi Trailing Stop
Trade fearlessly: auto-adjusts stops, manages risk, and locks profits with precision. Free for early users🚀 now -80%
cBot
Indices
Prop
Commodities
+1
Ultimate Trade Panel
Ultimate Trade Panel - a powerful, on-chart trading tool designed for precision and efficiency.
Zone Recovery Hedging (Made with AlgoBuilderX)
This strategy is based on the Zone Recovery strategy and utilizes hedging for trade management.
DreamProfitDEMO
DreamProfitFXBot hunts pips daily with precision, filters out noise, and locks profits fast. Built for sharp day-traders
cBot
XAUUSD
Breakout
Commodities
+3
Gold Pulse Pro
Gold Pulse Pro – An automated trading system for gold (XAUUSD) precisely engineered and powered by advanced algorithms
cBot
Indices
XAUUSD
FVG
+9
MACRO_ZERO V1-OHLC-FUTURES-PROJECTIONS
Multi-timeframe OHLC bars + projection levels from session analysis. Alerts on key level crosses. No trading execution.
cBot
NAS100
Indices
XAUUSD
+6
Matrix Rubber
🎯Professional mean reversion bot with 7 intelligent exit mechanisms. Eliminates catastrophic drawdowns.🎯
cBot
NZDUSD
AUD NZD 2min TF trades
// AUD/NZD - 2MIN TIMEFRAME // 5 YEARS BACKTEST, PROFIT 1500 USD, DRAWDOWN ABOUT 50 USD (RISKY TRADES - NO SL)
cBot
Martingale
Signal
Three Soldiers & Black Crows (Made with AlgoBuilderX)
This cBot uses Three White Soldiers, Three Black Crows patterns with ADX filtering and a Martingale strategy for trades.
cBOT EUR
FULLY FUNCTIONING EUR/USD TRADING BOT, TIMEFRAMES SETTINGS AVAILABLE 1H AND 3Om
cBot
NAS100
NZDUSD
Breakout
+12
ZONE HUNTER v2.0
SUPPORT AND RESISTANCE STRATEGY. Master the Market’s Turning Points with Surgical Accuracy. SEE THE FULL BACKTEST. 📈
cBot
XAUUSD
Forex
MACD
+1
Fission
监督 蓄力,准确抓波段
XAU USD 1H trend strategy
// XAU/USD 1H TIMEFRAME // 5 YEARS BACKTEST, PROFIT 2100 USD, DRAWDOWN MAX 195 USD 
cBot
USDJPY
777 - INTERMEDIATE - Adjustable risk cBOT Enc DEMO
USD/JPY Specialist cBOT
cBot
Grid
Martingale
Investion Basic
This is a basic martingale bot without an indicator. For long and short trading options at the same bot.
Trading_stop Plus
Trading_stop Plus 🧾 General Description Trading_stop Plus is the complete, enhanced version of the original Trading_sto