E7 BBKG NumSharp Sample
شعار "E7 BBKG NumSharp Sample"
03/09/2025
80
Desktop, Mobile, Web
صورة "E7 BBKG NumSharp Sample" المحملة

As requested by many of you, we are now working hard to provide examples of some of our machine learning code and packages.

TensorFlow, PyTorch, Keras, Numpy, Pandas and many more .NET packages to get going inside of cTrader.

Our mission is to make Machine Learning inside cTrader easier for everyone.

Happy hunting!

*** This code does not trade anything (it only prints out data etc). It is simply sample code of how you can start creating your own AI models using our Machine Learning packages.

.......................................................

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using cAlgo.API;
using cAlgo.API.Collections;
using cAlgo.API.Indicators;
using cAlgo.API.Internals;

using NumSharp;
using np = NumSharp.np;
using Shape = NumSharp.Shape;

using PandasNet;
using static PandasNet.PandasApi;

namespace cAlgo.Robots
{
    [Robot(TimeZone = TimeZones.UTC, AccessRights = AccessRights.None)]
    public class E7BBKGNumSharpSample : Robot
    {
        [Parameter("Version 1.01", DefaultValue = "Version 1.01")]
        public string Version { get; set; }

        [Parameter("Source")]
        public DataSeries Source { get; set; }

        [Parameter("Bars Required", DefaultValue = 50, MinValue = 1, MaxValue = 10000, Step = 1)]
        public int BarsRequired { get; set; }

        [Parameter("Method Name", DefaultValue = MethodName.DataSplitPrints)]
        public MethodName Mode { get; set; }
        public enum MethodName
        {
            DataSplitPrints,
            PandasPrints,
            NDArrayPrints
        }
        
        protected override void OnStart()
        {
            // Initialize any indicators
        }

        protected override void OnBar()
        {
            try
            {
                if (Mode == MethodName.DataSplitPrints)
                {
                    DataSplitPrints();
                }
                else if (Mode == MethodName.PandasPrints)
                {
                    PandasPrints();
                }
                else if (Mode == MethodName.NDArrayPrints)
                {
                    NDArrayPrints();
                }
            }
            catch (Exception ex)
            {
                Print($"Error: {ex.Message}");
                if (ex.InnerException != null)
                {
                    Print($"Inner Exception: {ex.InnerException.Message}");
                    throw;
                }
            }
        }

        private float[,] GetDataSet()
        {
            int startBar = Bars.ClosePrices.Count - BarsRequired;
            float[,] inputSignals = new float[BarsRequired, 5];

            for (int i = 0; i < BarsRequired; i++)
            {
                int barIndex = startBar + i;
                inputSignals[i, 0] = (float)Bars.OpenPrices[barIndex];
                inputSignals[i, 1] = (float)Bars.HighPrices[barIndex];
                inputSignals[i, 2] = (float)Bars.LowPrices[barIndex];
                inputSignals[i, 3] = (float)Bars.ClosePrices[barIndex];
                inputSignals[i, 4] = (float)Bars.TickVolumes[barIndex];
            }
            return inputSignals;
        }
        
        private float[,] GetTargetDataSet()
        {
            int startBar = Bars.ClosePrices.Count - BarsRequired;
            float[,] inputSignals = new float[BarsRequired, 5];

            for (int i = 0; i < BarsRequired; i++)
            {
                int barIndex = startBar + i;
                inputSignals[i, 0] = (float)Bars.OpenPrices[barIndex];
                inputSignals[i, 1] = (float)Bars.HighPrices[barIndex];
                inputSignals[i, 2] = (float)Bars.LowPrices[barIndex];
                inputSignals[i, 3] = (float)Bars.ClosePrices[barIndex];
                inputSignals[i, 4] = (float)Bars.TickVolumes[barIndex];
            }
            return inputSignals;
        }
        
        /// NumSharp Data Split Prints
        public void DataSplitPrints()
        {
            // Reshape input data to match the model's expected input shape
            //var inputShape = new Shape(-1, BarsRequired, 5);
            NDArray inputData = np.array<float>(GetDataSet());
            Print("Input NDarray: " + string.Join(", ", inputData));
            
            // Reshape target data to match the target shape expected by the model
            //var targetShape = new Shape(-1, 5);
            NDArray targetData = np.array<float>(GetTargetDataSet());
            Print("Target NDarray: " + string.Join(", ", targetData));
            
            // Split data into training and test sets
            int testSize = (int)(0.2 * inputData.shape[0]); // 20% for testing
            var (x_train, x_test) = (inputData[$":{inputData.shape[0] - testSize}"], inputData[$"{inputData.shape[0] - testSize}:"]);
            var (y_train, y_test) = (targetData[$":{targetData.shape[0] - testSize}"], targetData[$"{targetData.shape[0] - testSize}:"]);
            
            Print("X_train data: " + string.Join(", ", x_train));
            Print("X_test data: " + string.Join(", ", x_test));
            Print("Y_train data: " + string.Join(", ", y_train));
            Print("Y_test data: " + string.Join(", ", y_test));
        }
        
        /// PandasNet Prints
        public void PandasPrints()
        {
            // Convert float[,] to List<Series>
            var inputData = GetDataSet();
            var targetData = GetTargetDataSet();
            
            var inputSeriesList = new List<Series>();
            var targetSeriesList = new List<Series>();
            
            for (int col = 0; col < inputData.GetLength(1); col++)
            {
                List<float> columnData = new List<float>();
                for (int row = 0; row < inputData.GetLength(0); row++)
                {
                    columnData.Add(inputData[row, col]);
                }
                inputSeriesList.Add(new Series(columnData.ToArray()));
            }
            
            for (int col = 0; col < targetData.GetLength(1); col++)
            {
                List<float> columnData = new List<float>();
                for (int row = 0; row < targetData.GetLength(0); row++)
                {
                    columnData.Add(targetData[row, col]);
                }
                targetSeriesList.Add(new Series(columnData.ToArray()));
            }
            
            // Create DataFrames
            DataFrame inputDataFrame = new DataFrame(inputSeriesList);
            DataFrame targetDataFrame = new DataFrame(targetSeriesList);
            
            Print("Input DataFrame: " + inputDataFrame);
            Print("Target DataFrame: " + targetDataFrame);
            
            //Print("Input DataFrame: " + string.Join(", ", inputDataFrame));
            //Print("Target DataFrame: " + string.Join(", ", targetDataFrame));
        }
        
        /// Simple NumSharp NDArrays Prints
        public void NDArrayPrints()
        {
            if (Bars.ClosePrices.Count < BarsRequired)
                return;

            try
            {
                // Calling your Input Data float[,]
                float[,] inputData = GetDataSet();

                // Convert to NDArray and reshape to (BarsRequired, 5)
                NDArray inputNDArray = np.array(inputData);   // NumSharp
                Print("Input NumSharp NDarray Data : " + string.Join(", ", inputNDArray));
                Print("Input NumSharp NDarray Shape: " + string.Join(", ", inputNDArray.shape));
                
                int expectedLength = BarsRequired * 5;
                Print($"Expected NumSharp NDarray Length: {expectedLength}");
                Print($"Input NumSharp NDarray Size: {inputNDArray.size}");

                if (inputNDArray.size != expectedLength)
                {
                    Print($"Length MisMatch: Expected Length {expectedLength}, but got Size {inputNDArray.size}");
                    return;
                }
            }
            catch (Exception ex)
            {
                Print("Exception: " + ex.Message);
                Print("StackTrace: " + ex.StackTrace);

                Exception innerException = ex.InnerException;
                while (innerException != null)
                {
                    Print("Inner Exception: " + innerException.Message);
                    Print("Inner Exception StackTrace: " + innerException.StackTrace);
                    innerException = innerException.InnerException;
                }
            }
        }
    }
}

0.0
التقييمات: 0
تقييمات العملاء
لا توجد تقييمات لهذا المنتج حتى الآن. هل جرَّبته بالفعل؟ كن أول من يخبر الآخرين!
المزيد من هذا المؤلف
الأعلى تقييمًا
مجاني
E7 Polynomial Regression Channel
Polynomial Regression Channel which also reflects the volatility of the underlying asset.
E7 BBKG Indicator
E7 BBKG indicator with 80% plus accuracy used to show both, possible reversal and trend.
الأعلى تقييمًا
مجاني
E7 Volume Profile
E7 Volume Profile, more modern look and feel.
الأعلى تقييمًا
مجاني
E7 Harmonic Structures Basic
E7 Harmonic Structures Basic.
E7 Correlation Dashboard
E7 Correlation Dashboard.
مؤشر
Indices
E7 BlackScholes Model
Option pricing using the BlackScholes model and the Math.Numerics packages
مؤشر
Bollinger
E7 Indicators Free Overlays
Bollinger Band Cloud, Heiken Ashi, Trend Follower and Parabolic SAR.
مؤشر
Bollinger
E7 Indicators Free Studies
ADXR, KDJ, SineWave, Bollinger Band Volatility and AEOscillator.
قد يعجبك أيضًا
cBot
Prop
Forex
Signal
+2
QuantumGuard (Backtesting only)
Free Edition - EUR/USD M15 - More than 1000% profit per year
cBot
Breakout
XAUUSD
Commodities
+4
EasyPass PropFirm Wizard
EasyPass ProFirm Wizard
needThaiBot for Sniping Trade
This is a Sniper bot is for Fast Sniping Trade , suitable for shorter Timeframes
cBot
XAUUSD
Commodities
AI
AI Knights of the Round V2
AI Knights of the Round allows seamless switching between free and paid models, and supports backtesting AI performance
Bot RSI Medio
Test the RSI Forex Bot for free on EURUSD & GBPJPY with core RSI reversal features. Upgrade to Pro for 50%+ monthly
TeleNotifier
TelegramBot: Real-time trade updates, ad URLs, and insights on Telegram. Runs 24/7 with an affordable VPS. Limited-time
cBot
Signal
Supertrend
High Profit AUDCHF
Bot is based on Price Action strategy to open & manage orders. It is effective capital management and high profitability
Super Algo GBPUSD
Iper Algo GBPUSD
cBot
Indices
Commodities
Forex
News Trading cBot free trial
🚀 News Trading cBot - maximize the market opportunities! 📈
cBot
Commodities
MACD
SparrowBot-FreeTrial-V2
This bot can automatically generate buy and sell orders based on three specific Fixed bugs
cBot
RSI
Indices
XAUUSD
+3
V5MultiPairsFXDemo_noSourceCode
Advanced-Pro-CBot V5: A Cutting-Edge Algorithmic Trading cBot for cTrader
cBot
Crypto
RiskOnTrade - DEMO
Risk On Trade | Auto Position Size Calculator | Risk & Reward Tool | Auto Lot Size Calculator
cBot
Indices
ATR
Forex
+1
FREEE Auto Breakeven Absolute
Auto-Breakeven Bot w/ ATR & dual triggers. Works 100% with Risk Reward Guardian. Was Free for early users now -80%
cBot
Signal
BTCUSD
Crypto
+1
CryptoCrossoverBot
Crossover Bot es un sistema de trading algorítmico actualmente en operación real, currently in live operation.
cBot
RSI
XAUUSD
Forex
+10
proactive swing detector advanced
proactive swing detection and entry with multiple trade filters..high stable returns,minimal drawdowns
cBot
NZDUSD
AUD NZD 2min TF trades
// AUD/NZD - 2MIN TIMEFRAME // 5 YEARS BACKTEST, PROFIT 1500 USD, DRAWDOWN ABOUT 50 USD (RISKY TRADES - NO SL)
Order Manager 8.6x
Trade with confidence—control risk accurately and manage orders with speed and clarity.
cBot
Grid
XAUUSD
Commodities
+3
Gaucho Gold Scalper Demo Version
Copy Here =>https://ct.spotware.com/copy/strategy/107505 Purchase=> https://ctrader.com/products/2022?u=GauchoHood