Broker & Prop
Untuk perniagaan
00
Days
:
00
Hours
:
00
Minutes
:
00
Seconds
E7 BBKG NumSharp Sample
03/09/2025
113
Desktop, Mobile, Web
Sejak 18/12/2024
Jualan
1
Pemasangan percuma
2890
Imej yang dimuat naik "E7 BBKG NumSharp Sample"

As requested by many of you, we are now working hard to provide examples of some of our machine learning code and packages.

TensorFlow, PyTorch, Keras, Numpy, Pandas and many more .NET packages to get going inside of cTrader.

Our mission is to make Machine Learning inside cTrader easier for everyone.

Happy hunting!

*** This code does not trade anything (it only prints out data etc). It is simply sample code of how you can start creating your own AI models using our Machine Learning packages.

.......................................................

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using cAlgo.API;
using cAlgo.API.Collections;
using cAlgo.API.Indicators;
using cAlgo.API.Internals;

using NumSharp;
using np = NumSharp.np;
using Shape = NumSharp.Shape;

using PandasNet;
using static PandasNet.PandasApi;

namespace cAlgo.Robots
{
    [Robot(TimeZone = TimeZones.UTC, AccessRights = AccessRights.None)]
    public class E7BBKGNumSharpSample : Robot
    {
        [Parameter("Version 1.01", DefaultValue = "Version 1.01")]
        public string Version { get; set; }

        [Parameter("Source")]
        public DataSeries Source { get; set; }

        [Parameter("Bars Required", DefaultValue = 50, MinValue = 1, MaxValue = 10000, Step = 1)]
        public int BarsRequired { get; set; }

        [Parameter("Method Name", DefaultValue = MethodName.DataSplitPrints)]
        public MethodName Mode { get; set; }
        public enum MethodName
        {
            DataSplitPrints,
            PandasPrints,
            NDArrayPrints
        }
        
        protected override void OnStart()
        {
            // Initialize any indicators
        }

        protected override void OnBar()
        {
            try
            {
                if (Mode == MethodName.DataSplitPrints)
                {
                    DataSplitPrints();
                }
                else if (Mode == MethodName.PandasPrints)
                {
                    PandasPrints();
                }
                else if (Mode == MethodName.NDArrayPrints)
                {
                    NDArrayPrints();
                }
            }
            catch (Exception ex)
            {
                Print($"Error: {ex.Message}");
                if (ex.InnerException != null)
                {
                    Print($"Inner Exception: {ex.InnerException.Message}");
                    throw;
                }
            }
        }

        private float[,] GetDataSet()
        {
            int startBar = Bars.ClosePrices.Count - BarsRequired;
            float[,] inputSignals = new float[BarsRequired, 5];

            for (int i = 0; i < BarsRequired; i++)
            {
                int barIndex = startBar + i;
                inputSignals[i, 0] = (float)Bars.OpenPrices[barIndex];
                inputSignals[i, 1] = (float)Bars.HighPrices[barIndex];
                inputSignals[i, 2] = (float)Bars.LowPrices[barIndex];
                inputSignals[i, 3] = (float)Bars.ClosePrices[barIndex];
                inputSignals[i, 4] = (float)Bars.TickVolumes[barIndex];
            }
            return inputSignals;
        }
        
        private float[,] GetTargetDataSet()
        {
            int startBar = Bars.ClosePrices.Count - BarsRequired;
            float[,] inputSignals = new float[BarsRequired, 5];

            for (int i = 0; i < BarsRequired; i++)
            {
                int barIndex = startBar + i;
                inputSignals[i, 0] = (float)Bars.OpenPrices[barIndex];
                inputSignals[i, 1] = (float)Bars.HighPrices[barIndex];
                inputSignals[i, 2] = (float)Bars.LowPrices[barIndex];
                inputSignals[i, 3] = (float)Bars.ClosePrices[barIndex];
                inputSignals[i, 4] = (float)Bars.TickVolumes[barIndex];
            }
            return inputSignals;
        }
        
        /// NumSharp Data Split Prints
        public void DataSplitPrints()
        {
            // Reshape input data to match the model's expected input shape
            //var inputShape = new Shape(-1, BarsRequired, 5);
            NDArray inputData = np.array<float>(GetDataSet());
            Print("Input NDarray: " + string.Join(", ", inputData));
            
            // Reshape target data to match the target shape expected by the model
            //var targetShape = new Shape(-1, 5);
            NDArray targetData = np.array<float>(GetTargetDataSet());
            Print("Target NDarray: " + string.Join(", ", targetData));
            
            // Split data into training and test sets
            int testSize = (int)(0.2 * inputData.shape[0]); // 20% for testing
            var (x_train, x_test) = (inputData[$":{inputData.shape[0] - testSize}"], inputData[$"{inputData.shape[0] - testSize}:"]);
            var (y_train, y_test) = (targetData[$":{targetData.shape[0] - testSize}"], targetData[$"{targetData.shape[0] - testSize}:"]);
            
            Print("X_train data: " + string.Join(", ", x_train));
            Print("X_test data: " + string.Join(", ", x_test));
            Print("Y_train data: " + string.Join(", ", y_train));
            Print("Y_test data: " + string.Join(", ", y_test));
        }
        
        /// PandasNet Prints
        public void PandasPrints()
        {
            // Convert float[,] to List<Series>
            var inputData = GetDataSet();
            var targetData = GetTargetDataSet();
            
            var inputSeriesList = new List<Series>();
            var targetSeriesList = new List<Series>();
            
            for (int col = 0; col < inputData.GetLength(1); col++)
            {
                List<float> columnData = new List<float>();
                for (int row = 0; row < inputData.GetLength(0); row++)
                {
                    columnData.Add(inputData[row, col]);
                }
                inputSeriesList.Add(new Series(columnData.ToArray()));
            }
            
            for (int col = 0; col < targetData.GetLength(1); col++)
            {
                List<float> columnData = new List<float>();
                for (int row = 0; row < targetData.GetLength(0); row++)
                {
                    columnData.Add(targetData[row, col]);
                }
                targetSeriesList.Add(new Series(columnData.ToArray()));
            }
            
            // Create DataFrames
            DataFrame inputDataFrame = new DataFrame(inputSeriesList);
            DataFrame targetDataFrame = new DataFrame(targetSeriesList);
            
            Print("Input DataFrame: " + inputDataFrame);
            Print("Target DataFrame: " + targetDataFrame);
            
            //Print("Input DataFrame: " + string.Join(", ", inputDataFrame));
            //Print("Target DataFrame: " + string.Join(", ", targetDataFrame));
        }
        
        /// Simple NumSharp NDArrays Prints
        public void NDArrayPrints()
        {
            if (Bars.ClosePrices.Count < BarsRequired)
                return;

            try
            {
                // Calling your Input Data float[,]
                float[,] inputData = GetDataSet();

                // Convert to NDArray and reshape to (BarsRequired, 5)
                NDArray inputNDArray = np.array(inputData);   // NumSharp
                Print("Input NumSharp NDarray Data : " + string.Join(", ", inputNDArray));
                Print("Input NumSharp NDarray Shape: " + string.Join(", ", inputNDArray.shape));
                
                int expectedLength = BarsRequired * 5;
                Print($"Expected NumSharp NDarray Length: {expectedLength}");
                Print($"Input NumSharp NDarray Size: {inputNDArray.size}");

                if (inputNDArray.size != expectedLength)
                {
                    Print($"Length MisMatch: Expected Length {expectedLength}, but got Size {inputNDArray.size}");
                    return;
                }
            }
            catch (Exception ex)
            {
                Print("Exception: " + ex.Message);
                Print("StackTrace: " + ex.StackTrace);

                Exception innerException = ex.InnerException;
                while (innerException != null)
                {
                    Print("Inner Exception: " + innerException.Message);
                    Print("Inner Exception StackTrace: " + innerException.StackTrace);
                    innerException = innerException.InnerException;
                }
            }
        }
    }
}

0.0
Ulasan: 0
Ulasan pelanggan
Belum ada ulasan untuk produk ini. Anda sudah mencuba produk tersebut? Jadilah yang pertama untuk berkongsi pendapat anda!
Lebih banyak produk daripada penulis ini
Dinilai teratas
Percuma
E7 Volume Profile
E7 Volume Profile, more modern look and feel.
E7 BBKG Indicator
E7 BBKG indicator with 80% plus accuracy used to show both, possible reversal and trend.
E7 Polynomial Regression Channel
Polynomial Regression Channel which also reflects the volatility of the underlying asset.
E7 Harmonic Structures Basic
E7 Harmonic Structures Basic.
E7 Correlation Dashboard
E7 Correlation Dashboard.
Indikator
Bollinger
E7 Indicators Free Overlays
Bollinger Band Cloud, Heiken Ashi, Trend Follower and Parabolic SAR.
Indikator
Indices
E7 BlackScholes Model
Option pricing using the BlackScholes model and the Math.Numerics packages
Indikator
Bollinger
E7 Indicators Free Studies
ADXR, KDJ, SineWave, Bollinger Band Volatility and AEOscillator.
E7 cTrader User ID
cTrader ID
Anda juga mungkin suka
EngulfingCoreBotPro
Engulfing Pattern cBot Pro: Smart candlestick trading with filters, risk control & daily protection.
cBot
RSI
XAUUSD
Commodities
+4
Ai_Scalper Pro_Max
Ai_ScalperPro Max is a sophisticated automated trading robot designed specifically for gold (XAUUSD) trading
cBot
Indices
XAUUSD
Commodities
+3
needThai Algo AI Strategy
World First AI Trading now with Fibonacci Strategy Please ENJOY!! Adjust to suit your own strategy and risk management
cBot
NAS100
NZDUSD
Forex
+22
US2000 up to 100 % (24-11-2024 - 09-03-2025) Short edition
🚀 N.B.: Results with an initial invested capital of 100 euros.🚀 📌 Tested on US2000 with Accurate Prices
cBot
Grid
XAUUSD
Prop
Prop Firm Strategy (Made with AlgoBuilderX)
This strategy is tailored for Prop Firm accounts, featuring automated risk management to prevent breaching loss limits.
cBot
RSI
Forex
Signal
+1
BollingerRsiCombinedBot
This strategy combines two popular technical indicators to identify high‑probability trading opportunities
USH-EURUSD
Perfectly optimized to trade EURUSD achieving high risk reward. Win rate of over 85%
cBot
NAS100
NZDUSD
XAUUSD
+6
StrategiaSpikeEstremo Trial Day 15
Strategia Spike Estremo Trial Day 15
cBot
RSI
Indices
XAUUSD
+9
Super USD Trio AI-DEMO-v1
Super USD Trio AI is a smart, multi-symbol Forex trading robot tailored for EURUSD, USDJPY, and GBPUSD.
cBot
BTCUSD
Crypto
Scalping
BTCScalpingNet6Demo
Demo version of https://ctrader.com/products/318
cBot
Grid
XAUUSD
Martingale
+1
DragonXAU2V2
GOLD Trade Free Demo at https://ctrader.com/products/1729
needThai cBot Your AI Companion
needThaiBot Automated Version 3.7, Please Try default setting before making any changes
cBot
XAUUSD
Forex
MACD
+1
Fission
监督 蓄力,准确抓波段
cBot
Stocks
Signal
WeeklySMACrossBot_777_Stocks
Analyzes weekly moving average crossovers and opens trades on the hourly chart with risk management based on ATR.
cBot
XAUUSD
Commodities
Signal
Blue Road
Blue Road is an automated trading system designed with longevity, while carrying quiet high risk
cBot
NAS100
NZDUSD
RSI
+12
EMA RSI Risk cBot
A robust trend-following cBot
cBot
NAS100
Indices
XAUUSD
+6
STRATEGY REVERSAL Trial Day 15
STRATEGY REVERSAL Trial Day 15
GBPJPY_Scalper.DEMO
GBPJPY 1 minute scalping cBot for buying only.